您好,欢迎来到万书网,千万量级范文库任你选!

当前位置:首页 > 范文大全 > 一号文库

校本自编教材 五年级下册趣味数学

说明:文章内容所见即所得,本站下载的DOCX文档与页面上展示的相同。如下载word有问题请添加客服QQ:4084380 发送本文地址给客服即可处理(尽可能给您提供完整文档),感谢您的支持与谅解。本文地址:https://www.wanshu.net/fanwen/a1/382240.html

第一单元

行程问题

第1课时

追及问题(一)

第2课时

追及问题(二)

第3课时

用方程解决行程问题

第4课时

行程问题综合运用

第二单元

一般应用题

第1课时

一般应用题(一)

第2课时

一般应用题(二)

第3课时

一般应用题(三)

第4课时

一般应用题(四)

第三单元

长方体和正方体

第1课时

长方体和正方体(一)

第2课时

长方体和正方体(二)

第3课时

长方体和正方体(三)

第4课时

长方体和正方体(四)

第四单元

倍数问题

第1课时

倍数问题(一)

第2课时

倍数问题(二)

第3课时

倍数问题(三)

第4课时

倍数问题(四)

第一单元:行程问题

专题简析:

行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。

第一课时

:追及问题(一)

例1

甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米?

分析与解答:从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。

32×2÷(56-48)=8(小时)

(56+48)×8=832(千米)

答:东、西两地相距832千米。

【举一反三】

1.小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。学校到少年宫有多少米?

2.一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米?

3.甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。东村到西村的路程是多少米?

例2

快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米?

分析与解答:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)

答:慢车每小时行21千米。

【举一反三】

1.兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米?

2.汽车从甲地开往乙地,每小时行32千米。4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?

3.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学都能植这批树苗的一半还多20棵。如果这批树苗全部给五(1)班的同学去植,平均每人植多少树?

第二课时:追及问题(二)

例1

中巴车每小时行60千米,小轿车每小时行84千米。两车同时从相距60千米的两地同方向开出,且中巴在前。几小时后小轿车追上中巴车?

分析:原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。60÷24=2.5小时,所以2.5小时后小轿车能追上中巴车。

【举一反三】

1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。摩托车多长时间能够追上?

2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。几分钟后哥哥追上弟弟?

3.甲骑自行车从A地到B地,每小时行16千米。1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。A、B两地相距多少千米?

例2

一辆汽车从甲地开往乙地,要行360千米。开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。因为要按时到达乙地,修好车后必须每小时多行30千米。汽车是在离甲地多远处修车的?

分析:途中修车用了2小时,汽车就少行45×2=90千米;修车后,为了按时到达乙地,每小时必须多行30千米。90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完。因此,修车后再行(45+30)×3=225千米就能到达乙地,汽车是在离甲地360-225=135千米处修车的。

【举一反三】

1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。小王是在离工厂多远处遇到熟人的?

2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。加油站离乙地多少千米?

3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?

第三课时:用方程解决行程问题

例1

A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。乙车开出几小时后和甲车相遇?

分析:我们可以设乙车开出后X小时和甲车相遇。相遇时,甲车共行了38×(X+0.5)千米,乙车共行了42X千米,用两车行的路程和是259千米来列出方程,最后求出解。

解:设乙车开出X小时和甲车相遇。

38×(X+0.5)+42X=259

解得

X=3

即:乙车开出3小时后和甲车相遇。

【举一反三】

1.甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。1小时后,货车从乙地开出,每小时行62千米。货车开出几小时后与客车相遇?

2.小军和小明分别从相距1860米的两处相向出发,小军出发5分钟后小明才出发。已知小军每分钟行120米,小明骑车每分钟行300米。求小军出发几分钟后与小明相遇?

3.甲、乙两地相距446千米,快、慢两车同时从甲、乙两地相对开出,快车每小时行68千米,慢车每小时行35千米。中途慢车因修车停留半小时,求共经过几小时两车在途中相遇。

例2

一辆汽车从甲地开往乙地,平均每小时行20千米。到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。求甲、乙两地间的路程。

分析:如果设汽车从甲地开往乙地时用了X小时,则返回时用了(7.5-X)小时,由于往、返的路程是一样的,我们可以通过这个等量关系列出方程,求出X值,就可以计算出甲、乙两地间的路程。

解:设去时用X小时,则返回时用(7.5-X)小时。

20X=30(7.5-X)

解得

X=4.5

20×4.5=90(千米)

即:甲、乙两地间的路程是90千米。

【举一反三】

1.汽车从甲地开往乙地送货。去时每小时行30千米,返回时每小时行40千米,往返一次共用8小时45分。求甲、乙两地间的路程。

2.一架飞机所带的燃料最多可用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可飞1200千米。这架飞机最多飞多少千米就要往回飞?

3.师徒二人加工一批零件。师傅每小时加工35个,徒弟每小时加工28个。师傅先加工了这批零件的一半后,剩下的由徒弟去加工。二人共用18小时完成了加工任务。这批零件共有多少个?

第四课时:行程问题综合运用

例1

甲、乙两地相距420千米,一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米。整修路面的一段路长多少千米?

分析:假如这8小时都是每小时行60千米,就比实际行的路程多出了60×8-420=60千米。在8小时里,只要有1小时行驶在整修路面的公路上,汽车就少行60-20=40千米,60里面有1.5个40,因此,汽车在整修路面的公路上行驶了1.5小时,路长20×1.5=30千米。

【举一反三】

1.一辆汽车从甲城到乙城共行驶395千米,用了5小时。途中一部分公路是高速公路,另一部分是普通公路。已知汽车在高速公路上每小时行105千米,在普通公路上每小时行55千米。汽车在高速公路上行驶了多少千米?

2.小明家离体育馆2300米,有一天,他以每分钟100米的速度去体育馆看球赛。出发几分钟后发现,如果以这样的速度走下去一定迟到,他马上改用每分钟180米的速度跑步前进,途中共用15分钟,准时到达了体育馆。问:小明是在离体育馆多远的地方开始跑步的?

3.老师和小英为班级剪五角星,教师每分钟剪10个,剪了几分钟后小英接着剪,小英每分钟剪6个,两人共用8分钟,共剪了60个。小英剪了多少个五角星?

例2

客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米。两车相遇后又以原速前进,到达对方站后立即返回,两车再次相遇时客车比货车多行21.6千米。甲、乙两站间的路程是多少千米?

分析:客货两车从出发到第二次相遇,一共行了三个全程。而第二次相遇时客车比货车多行了21.6千米,说明两车已行了21.6÷(54-48)=3.6小时。用速度和乘所行时间就得到三个路程的和,再除以3就得到甲、乙两站间的路程。

【举一反三】

1.乙、慢两车同时从甲、乙两地相对开出并往返行驶。快车每小时行80千米,慢车每小时行45千米。两车第二次相遇时,快车比慢车多行了210千米。求甲、乙两地间的路程。

2.甲、乙两地相距216千米,客货两车同时从甲、乙两地相向而行。已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回。两车第二次相遇时,客车比货车多行多少千米?

3.甲、乙两车同时从相距160千米的两站相向开出,到达对方站后立即返回,经过4小时两车在途中第二次相遇。相遇时甲车比乙车多行120千米。求两车的速度。

第二单元

一般应用题

专题简析:一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。因此,一般应用题没有明显的结构特征和解题规律可循。解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。在实际解时,可以根据题中的已知条件,灵活运用这两种方法。

第一课时:一般应用题(一)

五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。原来每班多少人?

分析:从每班选16人参加少先队活动,6个班共选16×6=96(人)。剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。

举一反三

1.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少?

2.把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。这堆货物一共有多少箱?

3.老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。这批树苗一共有多少棵?

某车间按计划每天应加工50个零件,实际每天加工56个零件。这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。这个车间实际加工了多少个零件?

分析:如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个)。为什么会多加工288个呢?是因为每天多加工了56-50=6(个)。因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件。

举一反三

1.汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地。甲、乙两地相距多少千米?

2.小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。他家离学校有多远?

3.加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?

第二课时:一般应用题(二)

工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。已知这两种管子的长相差2米,这段排水管道长多少米?

分析:因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。而这50米就相当于(35-25)根短管子的长度。因此,每根短管子的长度就是50÷(35-25)=5(米),这段排水管道的长度应是5×35=175(米)。

举一反三

1.生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时。如果甲每小时比乙多生产10个零件,这批零件一共有多少个?

2.一班的小朋友在操场上做游戏,每组6人。玩了一会儿,他们觉得每组人数太少便重新分组,正好每组9人,这样比原来减少了2组。参加游戏的小朋友一共有多少人?

3.甲、乙二人同时从A地到B地,甲经过10小时到达了B地,比乙多用了4小时。已知二人的速度差是每小时5千米,求甲、乙二人每小时各行多少千米?

甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克。结帐时,甲和乙都要付给丙24元,每千克苹果多少元?

分析:三人拿同样多的钱买苹果应该分得同样多的苹果。24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48元。每千克苹果是48÷16=3(元)。

举一反三

1.甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6角钱。每支铅笔多少钱?

2.春游时小明和小军拿出同样多的钱买了6个面包,中午发现小红没有带食品,结果三人平均分了这些面包,而小红分别给了小明和小军各2.2元钱。每个面包多少元?

3.“六一”儿童节时同学们做纸花,小华买来了7张红纸,小英买来了和红纸同样价格的5张黄纸。老师把这些纸平均分给了小华、小英和另外两名同学,结果另外两名同学共付给老师9元钱。老师把9元钱怎样分给小华和小英?

第三课时:一般应用题(三)

甲、乙两工人生产同样的零件,原计划每天共生产700个。由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。甲、乙原计划每天各生产多少个零件?

分析:二人实际每天比原计划多生产1020-700=320(个)。这320个零件中,有100个是甲多生产的,那么320-100=220(个)就是乙日产量的1倍,即乙原来的日产量,甲原来每天生产700-220=480(个)。

举一反三

1.工厂里有2个锅炉,原来每月烧煤5.6吨。进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。原来两个锅炉每月各烧煤多少吨?

2.甲、乙两人生产同样的零件,原计划每天共生产80个。由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。甲、乙原计划每天各生产多少个零件?

3.甲、乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比计划少挖15米,而乙队由于增加了人,每天挖的是原计划的2倍,这样两队每天一共挖了150米。求两队原计划每天各挖多少米?

把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。求竹竿的长。

分析:因为竹竿先插了一次,湿了40厘米,倒转过来再插一次又湿了40厘米,所以湿了的部分是40×2=80(厘米)。这时,湿的部分比它的一半长13厘米,说明竹竿的长度是(80-13)×2=134(厘米)。

举一反三

1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。这根铁丝原来长多少厘米?

2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。这根竹竿原来长多少厘米?

3.两根电线一样长,第一根剪去80米,第二根剪去320米,剩下部分第一根是第二根长度的4倍。两根电线原来各长多少米?

第四课时:一般应用题(四)

将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?

分析:设这15段中有X段是8米长的,则有(15-X)段是5米长的。然后根据“8米的总长度比5米的总长度多3米”列出方程,并进行解答。

举一反三

1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。上坡路比下坡路少220米。这段小坡路全长多少米?

2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?

3.老师买回两种笔共16支奖给三好学生,其中铅笔每支0.4元,圆珠笔每支1.2元,买圆珠笔比买铅笔共多用了1.6元。求买这些笔共用去多少钱?

甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。又同时加工4小时后,甲总共加工的零件反而比乙多4200个。甲、乙每小时各加工零件多少个?

分析:(1)在后4小时内,甲一共比乙多加工了4200+400=4600(个)零件,甲每小时比乙多加工4600÷4=1150个零件。

(2)在前4小时内,甲实际只加工了4-2.5=1.5小时,甲1.5小时比乙1.5小时应多做1150×1.5=1725个零件,因此,1725+400=2125个零件就是乙2.5小时的工作量,即乙每小时加工2125÷2.5=850个,甲每小时加工850+1150=2024个。

举一反三

1.甲、乙二人同时从A地去B地,前3小时,甲因修车1小时,因此乙邻先于甲4千米。又经过3小时,甲反而领先了乙17千米。求二人的速度。

2.师徒二人生产同一种零件,徒弟比师傅早2小时开工,当师傅生产了2小时后,发现自己比徒弟少做20个零件。二人又生产了2小时,师傅反而比徒弟多生产了10个。师傅每小时生产多少个零件?

3.甲每小时生产12个零件,乙每小时生产8个零件。一次,二人同时生产同样多的零件,结果甲比乙提前5小时完成了任务。问:甲一共生产了多少个零件?

第三单元:长方体和正方体

专题解析:在数学竞赛中,有许多有关长方体、正方体的问题。解答稍复杂的立体图形问题要注意几点:

1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;

2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;

3.求一些不规则的物体体积时,可以通过变形的方法来解决。

第一课时:长方体和正方体(一)

一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)

分析:(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80×2=160(立方厘米);

(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。因此,此零件的表面积就是(10×6+10×4+2×2)×2=232(平方厘米)。想一想:你还能用别的方法来计算它的体积吗?

举一反三

1.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?

2.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

3.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?

有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)

分析:(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去了一个孔,所以体积减少了2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米);

(2)长方体完整的表面积是(8×5+8×6+6×5)×2=236(平方厘米),但由于挖去了一个孔,它的表面积减少了一个(2×2)平方厘米的面,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+2×2×4=252(平方厘米)。

举一反三

1.有一个形状如下图的零件,求它的体积和表面积。(单位:厘米)。

2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?

3.如果把上题中挖下的小正方体粘在另一个面上(如图),那么得到的物体的体积和表面积各是多少?

第二课时:长方体和正方体(二)

有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?

分析:由于后来两个水箱里的水面的高度一样,我们可以这样思考:把两个水箱并靠在一起,水的体积就是(甲水箱的底面积+乙水箱的底面)×水面的高度。这样,我们只要先求出原来甲水箱中的体积:40×32×20=25600(立方厘米),再除以两只水箱的底面积和:40×32+30×24=2024(平方厘米),就能得到后来水面的高度。

举一反三

1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。问水面高多少?

2.有一个长方体水箱,从面量长40厘米、宽30厘米、深35厘米,箱中水面高10厘米。放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。这时水面高多少厘米?

3.一段钢材长15分米,横截面面积是1.2平方分米。如果把它煅烧成一横截面面积是0.1平方分米的钢筋,求这根据钢筋的长。

将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

分析:因为正方体的六个面都相等,而54=6×9=6×(3×3),所以这个正方体的棱是3厘米。用同样的方法求出另两个正方体的棱长:96=6×(4×4),棱长是4厘米;150=6×(5×5),棱长是5厘米。知道了棱长就可以分别算出它们的体积,这个大正方体的体积就等于它们的体积和。

举一反三

1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。现将三块铁熔成一个大正方体,求这个大正方体的体积。

2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

3.把8块边长是1分米的正方体铁块熔成一个大正方体,这个大正方体的表面积是多少平方分米?

第三课时:长方体和正方体(三)

一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?

分析:把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。因此,锯好后表面积增加432平方厘米。

举一反三

1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?

2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?

3.把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。求涂上红色的面积一共是多少平方厘米?

有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?

分析:把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。所以原正方体的表面积是12×6=72平方厘米。

举一反三

1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?

2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?

3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?

第四课时:长方体和正方体(四)

一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:

(1)三个面涂有红色的有几个?

(2)二个面涂有红色的有几个?

(3)一个面涂有红色的有几个?

(4)六个面都没有涂色的有几个?

分析:按题中的要求切,切成的小正方体一共有3×3×3=27个。

(1)三个面涂有红色的小正方体在大正方体的顶点处,共有8个;

(2)二个面涂有红色的小正方体在大正方体的棱上,共有1×12=12个;

(3)一个面涂有红色的小正方体在大正方体的六个面上,共有1×6=6个;

(4)六个面都没有涂色的在大正方体的中间,有27-(8+12+6)=1个。

举一反三

1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?

2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?

3.把1立方米的正方体木块的表面涂上颜色,然后切成1立方分米的小正方体,在这些小正方体中,六个面都没有涂色的有多少个?

一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?

分析:这个长方体原来的表面积是(6×5+6×4+5×4)×2=148平方厘米,每切割一刀,增加2个面。切成三个体积相等的小长方体要切2刀,一共增加2×2=4个面。要求表面积和最大,应该增加4个6×5=30平方厘米的面。所以,三个小长方体表面积和最大是148+6×5×4=268平方厘米。

举一反三

1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?

2.把8个同样大小的小正方体拼成一个大正方体,已知每个小正方体的表面积是72平方厘米,拼成的大正方体的表面积是多少平方厘米?

3.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?

第四单元

倍数问题

专题简析:

倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的和或差以及这几个数之间的倍数关系,求这几个数的应用题。

解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1倍数,再根据其它几个数与这个1倍数的关系,确定“和”或“差”相当于这样的几倍,最后用除法求出1倍数。

第一课时:

倍数问题(一)

两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米?

分析:由于第二根比第一根多剪去26-18=8厘米,所以剩下的铁丝第一根就比第二根多(3-1)倍。因此,8÷(3-1)=4(厘米)。就是现在第二根铁丝的长度,它原来长4+26=30厘米。

举一反三

1.两个数的和是682.其中一个加数的个位是0,如果把这个0去掉,就得到另一个加数。这两个加数各是多少?

2.两根绳子一样长,第一根用去6.5米,第二根用去0.9米,剩下部分第二根是第一根的3倍。两根绳子原来各长多少米?

3.一筐苹果和一筐梨的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍。原来两筐水果一共有多少个?

甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。原来甲组有图书多少本?

分析:甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6×3=18本,则甲组仍是乙组的3倍。事实上甲组不但没有拿出18本,反而接受了乙组的6本,18+6就正好对应着后来乙组的(5-3)倍。因此,后来乙组有图书(18+6)÷(5-3)=12本,乙组原来有12+6=18本,甲组原来有18×3=54本。

举一反三

1.原来小明的画片是小红的3倍,后来二人各买了3张,这样小明的画片就是小红的2倍。原来二人各有多少张画片?

2.一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有多少本书?

3.幼儿园买来的苹果的个数是梨的3倍,吃掉10个梨和6个苹果后,剩下的苹果个数正好是梨的5倍。原来买来苹果和梨共多少个?

第二课时:倍数问题(二)

养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡?

分析:养鸡场原来母鸡的只数是公鸡的6倍,如果公鸡增加60只,母鸡增加60×6=360只,那么,后来的母鸡只数还是公鸡的6倍。可实际母鸡只增加了60只,比360只少300只。因此,现在母鸡只数只有公鸡的4倍,少了2倍。所以,现在公鸡的只数是300÷2=150只,原来有公鸡150-60=90只,一共养了90×(1+6)=630只鸡。

举一反三

1.今年,爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍。今年小明多少岁?

2.原来食堂里存的大米是面粉的4倍,大米和面粉各吃掉80千克,大米的重量是面粉的2倍。食堂里原来存有大米、面粉各多少千克?

3.饲养场的白兔只数是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍。饲养场原来养白兔和黑兔各多少只?

有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各装货物多少千克?

分析:如果丙车多装200千克,就和乙车装的货物同样多,这样三辆车装的总重量就是1800+200=2024千克。再把2024千克平均分成4份,就得到乙车上装的货物是500千克,甲车上装500×2=1000千克,丙车上装有500-200=300千克。

举一反三

1.三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱。三堆货物各多少箱?

2.甲、乙、丙三数的和是224,如果甲是乙的3倍,丙是甲的4倍,求甲、乙、丙三数各是多少。

3.把840本书放在书架的三层里,下层放的本数比上层的3倍多5本,中层放的本数是上层的2倍多1本。问:上、中、下三层各放书多少本?

第三课时:倍数问题(三)

甲、乙两个书架,已知甲书架有书600本,从甲书架借出三分之一,从乙书架借出四分之三后,甲书架的书是乙书架的2倍还多150本。乙书架原来有书多少本?

分析:甲借出后剩下:600*[1-1/3]=400本

那么乙借出后是:[400-150]/2=125本

即乙原来是:125/[1-3/4]=500本

列算式为

[(600-600×1/3)-150]÷2×4

=[400-150]÷2×4

=250÷2×4

=125×4

=500(本)

答:乙书架原有500本书

举一反三

1.某校有男生630人,选出男生人数的三分之一和女生人数的四分之三去排练团体操,剩下的男生人数是女生人数的2倍。这个学校共有学生多少人?

2.食堂存有同样重量的大米和面粉,吃大米的四分之三和60千克面粉后,剩下的面粉的重量地大米的3倍。原来存有大米和面粉各多少千克?

3.有两堆水泥,甲堆有4.5吨,已知甲堆重量的三分之一和乙堆重量的四分之一相等,乙堆有水泥多少吨?

A站有公共汽车26辆,B站有公共汽车30辆。每小时由A站向B站开出汽车12辆,B站向A站开出汽车8辆,都是经过1小时到达。几小时后B站的公共汽车辆数是A站的3倍?

分析:每小时由A站向B站开出汽车12辆,B站向A站开出汽车8辆,实际上就是每隔1小时,A站就减少4辆,而B站就增加4辆。要使B站的公共汽车辆数是A站的3倍,A站只能有(26+30)÷(1+3)=14(辆)则必须减少12辆。因为每小时减少4辆,则需3小时。

举一反三

1.甲有邮票42张,乙有邮票48张。每次甲给乙2张,而乙又给甲4张,这样交换多少次后,甲的邮票张数是乙的2倍?

2.甲仓存有大米650袋,乙仓存有大米400袋。每天从甲、乙仓各运出50袋,多少天后甲仓的大米袋数是乙仓的6倍?

3.有两杯水,一杯有水104毫升,另一杯有水24毫升,每次往两只杯子中各倒进8毫升水,倒几次后,一只杯中的水是另一杯的2倍?

第四课时:倍数问题(四)

幼儿园买来苹果的个数是梨的2倍。大班的同学每7人一组,每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。大班共有多少个同学?

分析:因为苹果是梨的2倍,每组分3个梨和3×2=6个苹果最后就一起分完。可每组分4个苹果,少分6-4=2个,所以有8组同学,全班有7×8=56人。

举一反三

1.高年级同学植树,共有杉树苗和杨树苗100棵。如果每个小组分给杉树苗6棵,杨树苗8棵,那么,杉树苗正好分完,杨树苗还剩2棵。两种树苗原来各有多少棵?

2.高年级同学植树,已知杨树的棵数正好是杉树的2倍。如果每小组分到杉树6棵,杨树8棵,那么,杉树正好分完,杨树还剩20棵。两种树原来各的多少棵?

3.同学们带着水果去看“敬老院”的老人,带的苹果是桔子的3倍。如果每位老人拿2个桔子和4个苹果,那么,桔子正好分完,苹果还剩下14个。同学们把水果分给了几位老人?

有两筐桔子,如果从甲筐拿出8个放进乙筐,两筐的桔子就同样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙筐的2倍。甲、乙两筐原来各有多少个桔子?

分析:根据“从甲筐拿出8个放进乙筐,两筐的橘子就同样多”可知,原来甲筐比乙筐多8×2=16个橘子;如果从乙筐拿出13个放到甲筐,这时,甲筐就比乙筐多16+13×2=42个。因此,乙筐里还有42÷(2-1)=42个,原来乙筐里有42+13=55个,甲筐里原来有55+16=71个。

举一反三

1.甲、乙两仓存有货物,若从甲仓取31吨放入乙仓,则两仓所存货物同样多;若乙仓取14吨放入甲仓,则甲仓的货物是乙仓的4倍。原来两仓各存货物多少吨?

2.兄弟两人原有同样多的人民币,后来哥哥买了5本书,平均每本8.4元;弟弟买了3支笔,每支笔1.2元,现在弟弟的钱是哥哥的3倍。兄弟两人原来各有多少元?

3.学校组织夏令营活动,如果参加的女生名额给5个男生,则男、女生人数同样多;如果参加的男生名额给4个女生,则男生是女生人数的一半。原定夏令营中男、女生各多少人?

校本自编教材 五年级下册趣味数学.docx

将本文的Word文档下载到电脑

推荐度:

下载

本类热门推荐

热门文章