您好,欢迎来到万书网,千万量级范文库任你选!

当前位置:首页 > 范文大全 > 一号文库

华南理工大学期末考试 高等数学(下)A

说明:文章内容所见即所得,本站下载的DOCX文档与页面上展示的相同。如下载word有问题请添加客服QQ:4084380 发送本文地址给客服即可处理(尽可能给您提供完整文档),感谢您的支持与谅解。本文地址:https://www.wanshu.net/fanwen/a1/401624.html

华南理工大学期末考试

高等数学(下)A

一、单项选择题(本大题共15分,每小题3分)

1.若在点处可微,则下列结论错误的是

(B)

(A)在点处连续;

(B)

在点处连续;

(C)

在点处存在;

(D)

曲面在点处有切平面

.2.二重极限值为(D)

(A);

(B);

(C);

(D)不存在.3..已知曲面,则(B)

(A);

(B);

(C);

(D)

4.已知直线和平面,则(B)

(A)在内;

(B)

与平行,但不在内;

(C)

与垂直;

(D)

与不垂直,与不平行(斜交)

.5、用待定系数法求微分方程的一个特解时,应设特解的形式

(B)

(A)

;(B);(C);(D)

二、填空题

(本大题共15分,每小题3本分)

1.,则

2.曲线L为从原点到点的直线段,则曲线积分的值等于

3.交换积分次序后,4.函数在点沿方向的方向导数为

5.曲面在点处的法线方程是

三、(本题7分)计算二重积分,其中是由抛物线及直线所围成的闭区域

解:

四、(本题7分)计算三重积分,其中是由柱面及平面所围成的闭区域

解:

五、(本题7分)计算,其中为旋转抛物面的上侧

解:

六、(本题7分)计算,其中为从点沿椭圆到点的一段曲线

解:

七、(本题6分)设函数,证明:1、在点处偏导数存在,2、在点处不可微

解:,极限不存在故不可微

八、(本题7分)设具有连续二阶偏导数,求

解:

九、(本题7分)设是微分方程的一个解,求此微分方程的通解

解:,求得

从而通解为

十、(本题8分)在第一卦限内作椭球面的切平面,使该切平面与三个坐标平面围成的四面体的体积最小,求切点的坐标

解:设切点,切平面方程为,四面体体积为

十一、(非化工类做,本题7分)求幂级数的收敛域及其和函数

解:收敛域上

十二、(非化工类做,本题7分)设函数以为周期,它在上的表达式为求的Fourier级数及其和函数在处的值

解:的Fourier级数为

和函数在处的值为0

十一、(化工类做,本题7分)已知直线和

证明:,并求由和所确定的平面方程

证:,故

由这两条直线所确定的平面方程为

十二、(化工类做,本题7分)设曲线积分与路径无关,其中连续可导,且,计算

解:

华南理工大学期末考试 高等数学(下)A.docx

将本文的Word文档下载到电脑

推荐度:

下载

本类热门推荐

热门文章