您好,欢迎来到万书网,千万量级范文库任你选!

当前位置:首页 > 范文大全 > 八号文库

培年级数学教案5篇

说明:文章内容所见即所得,本站下载的DOCX文档与页面上展示的相同。如下载word有问题请添加客服QQ:4084380 发送本文地址给客服即可处理(尽可能给您提供完整文档),感谢您的支持与谅解。本文地址:https://www.wanshu.net/fanwen/a8/213305.html

教案可以帮助教师规划评估方法,以便他们能够评估学生的学习进展并提供有针对性的反馈,教案可以在不同课程和学科之间分享,以促进教学创新和合作,以下是小编精心为您推荐的培年级数学教案5篇,供大家参考。

培年级数学教案篇1

平行线的判定(1)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

2.掌握直线平行的条件,领悟归纳和转化的数学思想

学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

一、探索直线平行的条件

平行线的判定方法1:

二、练一练1、判断题

1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

(2)

(3)

2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.

三、选择题

1.如图3所示,下列条件中,不能判定ab∥cd的是( )

a.ab∥ef,cd∥ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠3

2.右图,由图和已知条件,下列判断中正确的是( )

a.由∠1=∠6,得ab∥fg;

b.由∠1+∠2=∠6+∠7,得ce∥ei

c.由∠1+∠2+∠3+∠5=180°,得ce∥fi;

d.由∠5=∠4,得ab∥fg

四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

五、作业课本15页-16页练习的1、2、3、

5.2.2平行线的判定(2)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展空

间观念,推理能力和有条理表达能力.

毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

学习重点:直线平行的条件的应用.

学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

一、学习过程

平行线的判定方法有几种?分别是什么?

二.巩固练习:

1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.

(第1题) (第2题)

2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.

二、选择题.

1.如图,下列判断不正确的是( )

a.因为∠1=∠4,所以de∥ab

b.因为∠2=∠3,所以ab∥ec

c.因为∠5=∠a,所以ab∥de

d.因为∠ade+∠bed=180°,所以ad∥be

2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )

a.∠2=∠4 b.∠1=∠4 c.∠2=∠3 d.∠3=∠4

三、解答题.

1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

2.已知,如图2,点b在ac上,bd⊥be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.

培年级数学教案篇2

第1课时 鸡兔同笼

教学内容:p116页的练习二十五的第20题。

教学目标

知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

教学过程

一、情境导入

师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

生1:列表法,适合数据较小的问题。

生2:假设法,一般情况都适合,数量关系比较容易理解。

师:今天我们复习“鸡兔同笼”问题。

二、自主探究

师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

三、探究结果汇报

师:通过复习“鸡兔同笼”问题,你有哪些收获?

生1:借助列表的方法,解决简单的实际问题。

生2:我学会了化繁为简的学习方法。

生3:用“假设”法解决问题的一般性。

四、师生总结收获

师:通过本课的学习,你有哪些收获?

师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

板书设计

鸡兔同笼假设→调整(列表、画图)→检验

培年级数学教案篇3

教学目标:

1、进一步掌握100以内数的顺序。

2、进一步会比较100以内数的大小。

3、进一步结合具体事物,使学生感受100以内数的意义,会用100以内的数表示日常生活中的事物,并进行简单的估计和交流。

教学重点:

1、进一步掌握100以内数的顺序。

2、进一步会比较100以内数的大小。

教学难点:

1、进一步理解数位的意义,掌握100以内数的顺序。

2、进一步探索百数图中的排列规律。

教具准备:

幻灯机、幻灯片、数字卡片。

教学过程:

一、复习:

1、指名回答:说出个位数字和十位数字相同的`两位数。

说出十位是5的数。

开火车答:说出27后面的5个数。

说出各位是0的数。

2、比较20以内数的大小,指名回答:

16〇19 8〇18 15〇15

11〇12 10〇20 9〇6

二、新授:

1、出示幻灯片,学生观察母鸡下蛋图,比较左右两边图有什么不同。可以怎样比较呢?

(1)根据鸡蛋图来比,只看最后一行,左边有3个,右边有1个,所以28大于26。

(2)根据数的顺序比,28在26的后面,所以28大于26。

(3)根据数的组成比,28由2个十和8个一组成,26由2个十和6个一组成,所以28大于26。

2、用计数器比较数的大小:

39和45比较,四人小组讨论,怎样比能很快知道哪个数大,哪个数比较小,指名回答,说说小组讨论结果。

教师可引导学生归纳出比较两个数的大小的一般方法:

“先看十位上的数,十位上的数大,这个两位数就大;如果十位上的数相同,再看个位上的数,个位上的数大,则这个两位数就大。”

(教师板书:十位不同看十位,十位数字大的数就大;十位相同看个位,个位数字大的数就大。)

同理,所以用同样的方法,或用老师归纳出来的方法学习比较图。

3、教师可多写几个数,让学生直接比较(不用计数器)。

4、教师写出三个数让学生比较大小:可先找出和最小的数,再决定中间数。

5、教师再次总结比较数的一般方法。

三、板书设计:

比较大小

一般方法:十位不同看十位,十位数字大的数就大;

十位相同看个位,个位数字大的数就大。

培年级数学教案篇4

教学目标

1.学会用画“正”字的方法收集数据,并能按需要对数据进行简单的整理.

2.加深对条形统计图的认识,提高学生看条形统计图的能力.

教学重点

数据收集和整理的方法.

教学难点

数据收集和整理的方法.

教学过程

一、复习准备.

小华统计一个停车场里各种机动车的数量.数出有摩托车3辆,小汽车15辆,大客车8辆,载重车6辆.请你帮助她完成下面的统计表和条形统计图.

教师:要把题中的数据填入统计表中相应的栏目里,再用条形统计图表示出各种车辆数的多少.从题目的条件中可以看出,要统计的有几种数量?(几种车,每种多少辆.)

教师:制成的统计表有几栏,每栏多少格?

教师提问:看一看条形统计图中,每格表示多少?

二、学习新课.

(一)用画“正”字的方法收集数据.

教师:上面复习题中,统计停车场里面的车辆时,由于车辆是静止不动的,我们可以分类数出各种车的辆数,是用逐项数出数目的方法收集的数据.如果我们要统计一个路口在规定的时间内通过的各种机动车的数量,还能用逐项数出的方法来收集数据吗?

教师:收集数据时,根据具体条件不同,可以用不同的方法来收集.今天就来学习一种收集和整理数据的常用方法(板书课题:数据的收集和整理)

教师:请同学们作好准备,你们收集过路口的各种机动车数量.

学生汇报收集的数据

教师提问:为什么你们收集的数据不统一;有什么方法可以改进?

学生讨论:小组内分工,每人记一种车的数;先把各种车的名称写出来排列好,过车时分别作出“正”字的记录……

学生汇报后教师板书:

摩托车:正

小汽车:正正正正正正??

大客车:正正

载重车:正正正正

(二)填统计表和统计图.

1、教师:上面收集的数据,为了清楚地表示出来,要把这些数据整理,制成统计表.

机动车种类

辆数

合 计

摩 托 车

小 汽 车

大 客 车

载 重 车

教师提问:请看条形统计图,每格表示多少?这个数能不能改变?

教师说明:条形统计图中,每一格代表多少数量,要根据统计的数据大小而定.

2、学生练习.

把课本第2页的条形统计图和统计表补填完整.

3、控制人口过快增长是我国的一项基本国策.从1992年到1996年,全国每年增加的人口数依次是1348万、1346万、1333万、1271万和1268万.完成下面的统计表.

教师:统计表要分几栏?为什么?要分几格?为什么?

年份

1992

1993

1994

1995

1996

增加人口数(万)

三、巩固练习.

拿一枚1角硬币,从桌面上约30厘米的高度自由落下,共做20次,边做边记录落下后的情况,然后填入下面的统计表.

四、课堂总结.

我们收集数据的常用方法是什么?

五、课后作业.

收集本班同学家庭人口的数据,并进行整理填入下表.

六、板书设计.

省略

培年级数学教案篇5

教学内容

教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题.

教学目的

使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题.

教具准备

将复习中的第1题图画在小黑板上,第2题写在黑板上.

教学过程

一、复习

1.看图,回答下面的问题.

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

先让学生想一想,然后,再指定学生回答.

2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?

出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题.

核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几.

然后提问:

“解答这样的题目关键是什么?”

“关键是应该以谁作单位‘1’?”

“用什么方法计算?怎样列式?”

教师:这是我们过去学过的分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).

二、新课

1.教学例1.

出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”

请学生读题,提问:

“这道题和上面复习中的第2题有什么不同?”

“解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160=0.75=75%

教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.

2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:

“这道题怎样列式?”

让学生讨论一下.

学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.

3.教学例2.

教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用.

口述并板书发芽率计算公式:

发芽率=×100%

教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”.我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”.

培年级数学教案5篇.docx

将本文的Word文档下载到电脑

推荐度:

下载

本类热门推荐

热门文章