您好,欢迎来到万书网,千万量级范文库任你选!

当前位置:首页 > 范文大全 > 十号文库

正方体教学设计6篇

说明:文章内容所见即所得,本站下载的DOCX文档与页面上展示的相同。如下载word有问题请添加客服QQ:4084380 发送本文地址给客服即可处理(尽可能给您提供完整文档),感谢您的支持与谅解。本文地址:https://www.wanshu.net/fanwen/a10/211053.html

教学设计写好了,在接下来的教学中起到良好的效果,作为教师写好相关的教学设计可以不断提升教学质量,小编今天就为您带来了正方体教学设计6篇,相信一定会对你有所帮助。

正方体教学设计篇1

教学基本

内容六年制小学数学第十一册p25—26。

教学目的和要求

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

3、培养学生初步的归纳推理、抽象概括的能力。

教学重点

及难点探索并掌握长方体和正方体体积的计算方法。

长方体和正方体体积公式的推导。

教学方法

及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

学法指导

讨论交流,并认真听讲思考。

集体备课个性化修改

预习阅读书本25、26页,并初步理解解

教学环节设计

一、以旧引新

师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

二、探究新知

1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

师:将摆出的长方体放在桌上,并编号。

请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

2、验证、交流后归纳出长方体的体积计算公式及字母公式。

通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

通过交流得出公式:长方体的体积=长×宽×高。

问:如果用v表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

交流得出:v=abh.

3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

交流得出:正方体的体积=棱长×棱长×棱长。

重点理解的含义,进一步明确的读法、写法。

做“试一试”。

作业做“练一练”。

做练习六第2题

课堂作业:做练习六第1、2题

板书设计

执行情况与课后小结

正方体教学设计篇2

教学内容

教材第89 页:长方体和正方体的表面积

教学目标

1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。

2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

教学重难点

重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。

难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。

教学准备

教师:多媒体课件,长方体纸盒。

学生:长方体纸盒

教学设计

一、复习铺垫

同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?

生答。(教师强调面的知识)

二、创设情境 、引入问题

老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?

生:长方体纸盒的表面积。

师板书课题:长方体和正方体的表面积

师:看了课题同学们想问什么?

师生共议研究课题:

(1)什么叫长方体和正方体的表面积?

(2)怎样求长方体和正方体的表面积?

三、合作探究、学习新知

1. 探索长方体表面积的计算方法。

什么叫长方体的表面积呢?请看大屏幕。

多媒体出示长方体展开图。

师:同学们看完后有什么想说的?

生:围成长方体的是6个长方形。

生:长方体的表面积就是展开后6个面的总面积。

师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。

师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?

多媒体出示长方体粘合图

师:同学们看完后,又想到了什么呢?

生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。

生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。

?着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕

多媒体出示长方体图形

师:现在同学们能求出它的表面积吗?

生:不能。

师:为什么?

生:没有数据。

师课件出示数据,引导学生把数据放到长方体相应的位置。

2.探究每个面的长和宽与长方体的长、宽、高有什么关系?

师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?

多媒体展示,引导学生讨论:

上、下每个面的长和宽分别是长方体的()和();

前、后每个面的长和宽分别是长方体的()和(); 左、右每个面的长和宽分别是长方体的()和()。

小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:

上、下每个面的长和宽分别是长方体的(长)和(宽);

前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。

3、尝试计算

问:现在你能求出做这纸盒至少需要多大面积的纸板吗?

学生尝试计算,出示活动要求:

(1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。

(2) 把自己的计算方法和小组内的同学交流。

教师参与学生的活动。

反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问

学生板演后说明想法:

生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。

生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。

教师注意引导学生语言叙述的完整性,准确性。

师多媒体展示学生的汇报结论。

指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

4探究正方体的表面积计算方法。

多媒体出示:棱长为5厘米的正方体的表面积是多少?

学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.

四,巩固新知、拓展运用

1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。

2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。

3、课件出示“聪明的你”,引导学生注意:

(1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);

(2)计算时,关键是找准数据。

学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。

4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。

五、课堂小结

通过学习,你有哪些收获?还有那些不懂的问题?

正方体教学设计篇3

教学目标:

1.通过整理和复习,使学生进一步掌握长方体和正方体的特征及内在联系,表面积、体积、容积的概念以及相邻单位间的进率;

2.能进一步掌握长方体、正方体的表面积与体积的计算方法以及不规则物体的体积的计算方法,并能正确的计算。

3.进一步培养学生的空间观念,提高空间想象能力。

教学重难点:

1.教学重点:归纳整理有关长方体和正方体的知识,形成知识体系。

2.教学难点:灵活运用所学知识,解决实际问题。

教学过程:

一、谈话导入

同学们,最近这段时间我们都在学习长方体和正方体这个单元的知识,今天我们就一起对这部分知识进行回顾和整理。

让学生以小组为单位,在组内交流、回顾本单元的相关知识。

二、师生互动

1.呈现问题

出示问题:本单元学习了关于长方体和正方体的哪些知识?

学生自由发言,说说本单元所学的知识。

对照教材第42页情境图,完成下列问题。

(1)用图表示长方体和正方体的关系,并说明为什么。

(2)在长方体中分别指出与红色线标示的棱平行的棱和垂直的棱,你能发现什么?

学生独立思考,在小组内交流讨论,全班反馈。

2.全班反馈

相同点:有8个顶点,6个面,12条棱。

不同点:长方体:相对的面的面积相等,相对的棱长度相等。

正方体:每个面的面积都相等,每条棱的长度都相等。

关系:正方体是特殊的长方体。

3.继续呈现以下问题

(1)关于长方体和正方体的表面积和体积知识你学到了什么?

(2)回忆计算表面积的方法以及探索体积公式的过程,想一想关键要知道什么?计算体积和容积有什么相同点?

4.继续反馈

指名学生反馈,教师适时板书总结。表面积是各个面的总面积。

体积是物体所占空间的大小。

容积是容器所能容纳物体的体积,其计算公式与体积的计算公式相同。

三、巩固练习

1.基础练习

(1)指导学生完成教材第43页“练习十”第1题。

(2)指导学生完成教材第43页“练习十”第2题。

要求学生独立思考,再组织交流。

四、课堂小结今天我们整理与复习了长方体和正方体这单元的相关知识。同学们,通过今天的复习,你们又有什么新的收获?

正方体教学设计篇4

一、课题

长方体和正方体的认识

二、教学目标

(一)掌握长方体和正方体的特征,认识它们之间的关系。

(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。 教学重点和难点

(一)长方体和正方体的特征。

(二)认识立体图形,发展学生初步的空间观念。 教具准备

三、教具

长方体框架、长方体、正方体、圆柱、墨水瓶盒等,课件 学具:长方体和正方体纸盒。

四、教学过程

(一)复习准备

同学们,我们一起来回忆一下以前学过什么图形?谁来说说 (学生说)

不错,那谁来说以说它们当中哪些图形是平面图形?哪些是立体图形?(边叙述,边出示幻灯片)

今天我们就来进一步认识这些图形中的两个——长方体和正方体 (板书:长方体和正方体)

(二)新授

1、老师今天带来了长方体(展示长方体)和正方体(展示正方体)。 2、还记得我们以前认识图形的一些方法吗?谁愿意来给老师说说? (学生说:摸一摸,看一看,比一比,量一量,数一数 ……)

我们今天进一步认识长方体和正方体,老师要看一下你们都用了哪些方法?

现在请仔细观察你的长方体和正方体,想一想,它是由哪些部分组成的?我请......

(学生说)

3、说的真好,长方体和正方体都是由面、棱、顶点三个部分组成的,那谁来指指长方体的面是哪一个部分?

(请一个学生上台来说)

拿出你们的长方体和正方体摸摸看。 谁来指指长方体的棱是哪一个部分? (请一个学生上台来说)

拿出你们的长方体和正方体摸摸看。

那长方体或正方体的顶点又是指哪一个部分?请同桌互相指指看看。 (同桌互相指顶点) (课件出示)

数学上我们把长方体或正方体平平的部分叫做面,把两个面相交的线段叫做棱,我们把三条棱相交的点叫做顶点

今天我们就从面、棱、顶点三个方面来研究长方体和正方体 首先研究长方体,我们一起来读一下讨论要求。 (学生读要求)

现在每排的4个同学为一个小组,分组讨论,并将讨论的结果填写在老师发放的表格中。

正方体教学设计篇5

教学目标

知识与技能

(1)理解体积的含义。

(2)认识常用的体积单位:立方米、立方分米、立方厘米。

(3)能正确区分长度单位、面积单位和体积单位的不同。

过程与方法

(1)运用观察实验的方法理解体积的含义。

(2)结合生活中的事物感知体积单位的大小。

情感态度与价值观

(1)发展学生的空间观念,培养学生的思维能力。

(2)渗透事物之间普遍联系的辩证唯物主义。

教学重点使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。

教学难点帮组学生建立体积是1立方米、1立方分米、1立方厘米的大小的表象,能正确应用体积单位估算常见物体的体积。

教学用具教师准备:盛有红色水的大玻璃杯一个,用绳捆着的大小石头各一块,沙一堆;投影仪和1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。学生准备:12个1立方厘米的正方体学具。

教学过程

一、揭示课题

我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。

二、探索研究

1.实验观察

观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?

观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么?

观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么?

图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大?

结论:物体所占空间的大小叫做物体的体积。(板书课题:体积)

加深理解:(1)你知道什么是长方体和正方体的体积?(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?(3)做第30页的“做一做”。

2.教学体积单位。

(1)介绍体积单位。

常用的体积单位有:立方米、立方分米、立方厘米。

(2)1立方米、1立方分数、1立方厘米的体积各有多大。

1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。②看看我们身边的什么的体积大约1立方厘米。

1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。

1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米?

(3)建立表象,感知大小

投影显示第36页的第2题,让学生口答。

3.长度单位、面积单位、体积单位的联系与区别。

投影显示第31页的“做一做”的第一题,让学生说。

三、课堂实践

1、做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。

2、做练习七的第3题,学生独立做后集体订正。

四、课堂小结

学生小结今天学习的内容。

旁批:

后记:

正方体教学设计篇6

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: v=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用v表体积,a表示棱长

v=a·a·a或者v=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计.教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: v=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的`体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用v表体积,a表示棱长

v=a·a·a或者v=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计.

正方体教学设计6篇.docx

将本文的Word文档下载到电脑

推荐度:

下载

本类热门推荐

热门文章